Shock Capturing with Discontinuous Galerkin Method
نویسندگان
چکیده
Shock capturing has been a challenge for computational fluid dynamicists over the years. This article deals with discontinuous Galerkin method to solve the hyperbolic equations in which solutions may develop discontinuities in finite time. The high order discontinuous Galerkin method combining the basis of finite volume and finite element methods has shown a lot of attractive features for a wide range of applications. Various techniques proposed in the literature to deal with discontinuities basically reduce the order of interpolation in the region around these discontinuities. The accuracy of the scheme therefore may be degraded in the vicinity of the shock. The proposed method resolves the discontinuities presented in the solution by applying viscosity into the shock-containing elements. The discontinuity is spread over a distance and is well approximated in the space of interpolation functions. The technique of adding viscosity to the system and the indicator based on the expansion coefficients of the solution are presented. A number of numerical examples in one and two dimensions is carried out to show the capability of the scheme for shock capturing.
منابع مشابه
The multi-dimensional limiters for discontinuous Galerkin method on unstructured grids
Accuracy-preserving and non-oscillatory shock-capturing technique is the bottle neck in the development of discontinuous Galerkin method. Inspired by the success of the k-exact WENO limiters for high order finite volume methods, this paper generalize the k-exact WENO limiter to discontinuous Galerkin methods. Also several improvements are put forward to keep the compactness and high-order accur...
متن کاملEfficient computation of all speed flows using an entropy stable shock-capturing space-time discontinuous Galerkin method
We present a shock-capturing space-time Discontinuous Galerkin method to approximate all speed flows modeled by systems of conservation laws with multiple time scales. The method provides a very general and computationally efficient framework for approximating such systems on account of its ability to incorporate large time steps. Numerical examples ranging from computing the incompressible lim...
متن کاملOn the Convergence of a Shock Capturing Discontinuous Galerkin Method for Nonlinear Hyperbolic Systems of Conservation Laws
Abstract. In this paper, we present a shock capturing discontinuous Galerkin (SC-DG) method for nonlinear systems of conservation laws in several space dimensions and analyze its stability and convergence. The scheme is realized as a space-time formulation in terms of entropy variables using an entropy stable numerical flux. While being similar to the method proposed in [14], our approach is ne...
متن کاملEntropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography
We describe a shock-capturing streamline diffusion space-time discontinuous Galerkin (DG) method to discretize the shallow water equations with variable bottom topography. This method, based on the entropy variables as degrees of freedom, is shown to be energy stable as well as well-balanced with respect to the lake at rest steady state. We present numerical experiments illustrating the numeric...
متن کاملSub-Cell Shock Capturing for Discontinuous Galerkin Methods
A shock capturing strategy for higher order Discontinuous Galerkin approximations of scalar conservation laws is presented. We show how the original explicit artificial viscosity methods proposed over fifty years ago for finite volume methods, can be used very effectively in the context of high order approximations. Rather than relying on the dissipation inherent in Discontinuous Galerkin appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005